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Abstract In the present paper, we aim to reduce the discrepancies between tsunami arrival times
evaluated from tsunami models and real measurements considering the role of ocean compressibility. We
perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope
Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is
validated against a 3-D computational model. Physical properties of surface gravity waves are studied and
compared with those for waves evaluated from an incompressible flow solver over realistic geometry for
2011 Tohoku-oki event, revealing reduction in phase speed.

Plain Language Summary Submarine earthquakes and submarine mass failures (SMFs), can
generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can
travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical
models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e.
Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically
neglected parameters in these models cause discrepancies between model outputs and observations. Most
of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to
observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation
speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean
has been developed, validated and tested for simplified and real cases against three dimensional and
incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is
reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating
Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model
development to include ocean compressibility among other typically neglected parameters.

1. Introduction

Most existing tsunami propagation models consider the ocean to be an incompressible, homogenous
medium. Recently, it has become clear that models of this type predict tsunami arrival times at distant sta-
tions which are slightly early in comparison to observations. Part of this discrepancy may be attributed to
the neglect of frequency dispersion in a number of operational models, which slow the waves relative to
the prediction of shallow water theory, but corrections afforded by this effect in Boussinesq or nonhydro-
static models (Baba et al., 2015; Kirby et al., 2013; Yamazaki et al., 2011) only account for a portion of the
observed discrepancy. See for example, the discussion of arrival of waves from the Tohoku-oki event at
DART buoy #32411 offshore of Panama in Kirby et al. (2013). A number of studies have attributed the
observed delay of arrival to additional physical features including thermal or salinity-based density stratifica-
tion (Allgeyer & Cummins, 2014; Watada, 2013), compressibility of the water column (Allgeyer & Cummins,
2014; Dalrymple & Rogers, 2007; Wang, 2015; Watada, 2013), and elastic deformation of the underlying solid
earth (Allgeyer & Cummins, 2014; Eyov et al., 2013; Watada et al., 2014). Taking a number of typically
neglected effects together, the phase speed of surface gravity waves is reduced compared to that of an
incompressible fluid due to the combined effects of compressibility, stratification, and elasticity (Baba et al.,
2017). Wang (2015) introduced a depth correction in a shallow water model in order to mimic the effects
of compressibility without changing the governing equations. The long period dispersion effect due to
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seawater compressibility, density stratification, bottom elasticity, and gravitational potential changes can
rival the size of the short period dispersions embedded in Boussinesq equation. Boussinesq models con-
sider the effects of frequency dispersion especially in intermediate and shallow waters, which are increas-
ingly coming into use as ocean basin scale tsunami propagation models. The capabilities of these models
have been expanded considering the effects of earth rotation and Coriolis forces on propagation of tsunami
waves in global scale. Taking into account the aforementioned parameters can improve the accuracy of
model descriptions of basin scale wave propagation (Kirby et al., 2013; Løvholt et al., 2008; Yamazaki et al.,
2011).

In the last decade, studies have shown the advantages to be gained by taking the compressibility of water
into account in describing the behavior of the water column in a tsunami source region (Levin & Nosov,
2016). Also, hydroacoustic waves generated by tsunamigenic sources due to the compressibility of water
column gain attentions by many researchers as tsunami precursor as a component of Tsunami Early Warn-
ing Systems (Abdolali et al., 2015a; Cecioni et al., 2015; Stiassnie, 2010).

Here a simplified example showing the effect of compressibility in tsunami wave propagation speed is per-
formed using two 3-D solvers in constant depth for the compressible and incompressible fluids. The model
equations are described in section 2. We use h 5 4,000 m, c 5 1,500 m/s, and q 5 1,000 kg/m3. The other
parameters are for a unit sudden elevation of source area with semilength b 5 30 km and rise time s 5 10 s.
The results are depicted in Figure 1, which show the time series of free-surface g at 1,000 km from the epi-
center. The black line shows the time series of free-surface elevation from incompressible water model
while the blue line shows the results from a compressible model. The time lag, Dt, between the arrival of
surface gravity waves obtained from these models are highlighted in the figure.

Three-dimensional (3-D) numerical models for simulation of surface gravity and hydroacoustic waves over
large-scale geometries within the framework of compressible fluids are computationally expensive. Nosov
and Kolesov (2007) have used a three-dimensional numerical model to study the Tokachi-oki 2003 tsunami
event on a regional domain. A practical solution for large-scale applications would be depth-integrated
numerical models. Sammarco et al. (2013) have proposed a hyperbolic Mild Slope Equation for Weakly Com-
pressible fluid, MSEWC, over rigid bottom. Subsequently, Abdolali et al. (2015b) derived the hyperbolic Mild
Slope Equation for Dissipative Weakly Compressible fluids, MSEDWC, accounting for damping induced by
viscoelastic properties of a deformable bottom.

In this paper, we modify the mild-slope formulation of Sammarco et al. (2013) to include the effects of
ocean compressibility in order to reduce the discrepancy between propagation speed of surface gravity
waves given from in situ measurement and model simulation. Governing equations and the resulting eigen-
values, eigenfunctions and dispersion relation for monochromatic wave components are presented in sec-
tion 2. In section 3, we derive a modified MSEWC which extends the original formulation of Sammarco et al.

Figure 1. Time lag in tsunami arrival time in term of free-surface records at a distance of x 5 1,000 km from the epicenter.
Results of a sample computation carried out using two 3-D flow solvers in a constant depth, h 5 4,000 m, for a unit source
area with semilength b 5 30 km and rise time s 5 10 s, evaluated by the incompressible solver (black line) and the com-
pressible solver (3) (blue line). The peak arrival times are shown by vertical lines correspond to wave speed calculated
from (equation (14)).
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(2013) to account for the compressibility of the static ocean. Verification of the mild-slope equation model
is carried out for constant and varying geometries against a fully 3-D model in section 4. In section 5, follow-
ing Tappin et al. (2014) and Abdolali et al. (2017), the generation mechanism of the 2011 Tohoku-oki is
modeled as a combination of the space and time varying coseismic seafloor deformation caused by the
earthquake followed by a submarine mass failure (SMF) to justify the mismatch between arrival time at far
field gauges, calculated from incompressible models. Conclusions are given in section 6.

2. Governing Equations

Consider a three-dimensional Cartesian coordinate system x5ðx; y; zÞ with the origin in the undisturbed
free surface, and the z axis oriented vertically upward. The governing equations for inviscid motion of a
compressible medium are given by

qt1r � ðquÞ50

ut1ðu � rÞu1
1
q
rp52giz

(1)

where g is gravitational acceleration, q is fluid density, p is pressure, and u is velocity. Equations (1) require an
additional closure relating density to pressure, q5qðpÞ. We express this in terms of density and pressure varia-
tions as dq5ðdq=dpÞdp5dp=c2, where c is sound speed in water and is taken to be constant. With viscosity
neglected and the assumed relation between density and pressure, the conditions for the existence of a
velocity potential are satisfied, and we write u5rU. A basic, hydrostatic ocean state may then be defined as

q0ðzÞ5qse2cz; p0ðzÞ5
qsg
c

e2cz21ð Þ; u50 (2)

where c5g=c2 is the lapse rate for density and pressure with elevation. After linearizing about the basic
state, the equation governing U is given by (Bondi, 1947)

Utt2c2ðr2
hU1UzzÞ52gUz; 2h � z � 0 (3)

where rh is the horizontal gradient operator and subscripts on dependent variables denote partial deriva-
tives. Equation (3) follows from the use of the complete expressions (2) for background density and pres-
sure; however, in practice these are well approximated by the leading order expressions retaining
compressibility effects:

q0ðzÞ5qsð12czÞ; p0ðzÞ52qsgz 12
1
2

cz

� �
(4)

The linearized boundary conditions at the free surface, z 5 0, and the impermeable (but possibly moving)
bottom, z52h, are

gUz1Utt50; z50

Uz1ht1rhU � rhh50; z52h
(5)

For the case of a flat bottom, the velocity potential for a given angular frequency x may be expanded in
terms of plane waves:

Uðx; y; z; tÞ5
X1
n50

fnðzÞeiðkn x2xtÞ (6)

where kn are the modal wave numbers. Substituting (6) in (3)–(5) with h constant gives the boundary value
problem (BVP):

f 00n 2cf 0n2b2
nfn50

f 0nð2hÞ50

gf 0nð0Þ2x2fnð0Þ50

(7)

where b2
n5k2

n2x2=c2 is the separation constant for the case of density/pressure fluctuations in an otherwise
constant density ocean (Sammarco et al., 2013). The problem is put in Sturm-Liouville form by the substitution:
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fnðzÞ5~f nðzÞecz=2 (8)

yielding the eigenvalue problem:

~f
00
n2~b

2
n
~f n50

~f 0nð2hÞ1 c
2

~f nð2hÞ50

~f 0nð0Þ1
c
2

2
x2

g

� �
~f nð0Þ50

(9)

with ~b
2
n5b2

n1ðc=2Þ2. The problem yields eigenfunctions ~f nðzÞ, normalized to a value of unity at z 5 0, given
by

~f nðzÞ5
cosh ð~bnðh1zÞÞ2ðc=ð2~bnÞÞsinh ð~bnðh1zÞÞ

cosh ð~bnhÞ2ðc=ð2~bnÞÞsinh ð~bnhÞ
(10)

The dispersion relation governing ~bn is given by (11) (Dalrymple & Rogers, 2007; Kadri, 2015; Kadri &
Stiassnie, 2013):

x2 12ðc=ð2~bnÞÞtanh ~bnh
h i

5g~bnð12ðc=ð2~bnÞÞ2Þtanh ~bnh (11)

The real root ~b0 of the dispersion relation (11) represents the primary surface gravity wave modified by
compressibility effects, while the imaginary roots ~bn; n � 1 describe both progressive and spatially decay-
ing hydroacoustic modes, which are generated within compressible flow framework together with surface
gravity waves. For the case of gravity and hydroacoustic waves propagating in a constant density ocean
without static compressibility, the dispersion relation and eigenfunctions reduce to the forms:

x25gbntanh ðbnhÞ (12)

fnðzÞ5
cosh ðbnðh1zÞÞ

cosh ðbnhÞ (13)

as in Sammarco et al. (2013).

The solution of the dispersion relation (11) is depicted in Figure 2 for surface gravity wave (n 5 0) and in Figure 3
for acoustic modes (n � 1), in the range of 0.1–10 km water depth. In Figure 2, the phase speed calculated for
compressible ocean with constant density (dashed line) and for variable density (solid line) are shown for fre-
quencies in the range of 0.0001–0.1 Hz and for 1–6 km water depth. Note that for realistic, variable depth
bathymetries near subductions zones, tsunami waves propagate over large depth (�5–6 km) for short

Figure 2. Phase speed for varying water depth (1 km increments) for a compressible (solid lines) and incompressible
ocean (dashed lines). For incompressible ocean, the wave number is given by kn5bn where bn is the solution of disper-
sion relation (equation (12)). For compressible ocean with constant density, the wave number is given by k2

n5b2
n1x2=c2

where bn is the solution of dispersion relation (equation (12)). For compressible ocean with variable density, the wave
number is given by k2

n5~b
2
n2c2=41x2=c2 where ~bn is the solution of dispersion relation (equation (11)). The shaded area

represents the frequency range corresponding to short waves (k � 5h), where k is wavelength.
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distances and usually propagate over h � 4 km depth. In the shallow water limit, kh� 1, the classical phase
speed c0 for incompressible motion, the phase speed cin evaluated for compression waves in a constant density
medium (12) and cco evaluated from (11) for waves in a compressed, variable density medium, are given by

c05
ffiffiffiffiffiffi
gh

p
cin5c0 12

1
2

ch

� �
5c0 12

1
2

M2

� �
kh� 1

cco5c0 12
1
4

ch

� �
5c0 12

1
4

M2

� � (14)

where M5
ffiffiffiffiffiffi
gh

p
=c5c0=c is a Mach number based on the linear incompressible surface longwave speed.

Note that neglect of the static compressibility of the ocean itself in models for hydroacoustic fluctuations

Figure 3. Imaginary roots of dispersion relation bn for varying water depth (0.1–10 km), nth modes are shown in a–c. The
wave number is given from solution of dispersion relation (11). The evanescent modes are shown by shaded areas in
each subplot where k2

n5x2=c21b2
n � 0.
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leads to an overestimation of the phase speed reduction relative to the incompressible case. As it is shown
by shaded area in Figure 1, the time lag between compressible and incompressible model results at the dis-
tance of x 5 1,000 km can be evaluated by Dt5x=cco2x=c0522 s.

In Figure 3, the first three imaginary separation constants, representing acoustic modes, are shown
in each subplot. The shaded area in each subplot shows the range for evanescent modes where
k2

n5x2=c21b2
n � 0.

3. Mild-Slope Equation

We develop a mild-slope equation based on the eigenfunction structure for the problem with constant
layer depth h. We use the governing equation and boundary conditions described in section 2 to derive the
mild-slope model using an approach described in Sammarco et al. (2013) and Abdolali et al. (2015b). The
hypothesis of a mild slope allows us to seek a solution in the form:

Uðx; y; z; tÞ5
X1
n50

~f nðx; y; zÞe
c
2z ~/nðx; y; tÞ (15)

Reformulating the governing equation (3) equivalently in terms of the ~f n and ~/n and substituting g5c2c
and first and second derivatives of (8), we obtain

X1
n50

1
c2
ð~f n

~/nÞtt2r2
hð~fn

~/nÞ2~fn zz
~/n1

c
2

� �2
~fn

~/n

� �
50 (16)

where ~fn z and ~fn zz are

~fn z5
~fn z1

c
2

~fn

� �
e

c
2z (17)

~fn zz5½~fn zz12
c
2

� �
~fn z1

c
2

� �2
~fn �e

c
2z (18)

Multiplying (16) by ~f m, integrating over the depth, invoking the orthogonality of the ~f n’s and using Leibnitz’
rule and boundary conditions (5) finally gives

In
1

c2
1

1
g

� �
~/n;t

� �
;t
2rh � In

1rh
~/n

� �
1 In

21
c
2

� �2
In
1

� �
~/n1

c
2

12~f
2
nð2hÞ

h i
~/n5~f nð2hÞe2cz=2ht (19)

where we have neglected products of first-order spatial and temporal derivatives of the vertical eigenfunc-
tions ~f n. The model coefficients are given by

Figure 4. Frequency band optimization of source spectrum. The vertical dashed line shows the maximum allowable value
Dfopt in 2-D model, which successfully reconstructs 3-D wave train.
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Figure 5. Results for the free-surface elevation time series, g, at x 5 1,000 km from the monochromatic wave generator
according to the 3-D (solid line) and depth-integrated (dashed line) models in a constant depth (h 5 4 km). The dimen-
sionless wavelength (k=h), phase celerity (cco), and signal arrival time (tar) (vertical dashed line) correspond to three mono-
chromatic wave frequencies, (top) f 5 0.0001 Hz, (middle) f 5 0.0005 Hz, and (bottom) f 5 0.001 Hz, are calculated from
the solution of dispersion relation presented in equation (14).

Figure 6. (a) Residual seabed displacement (f0) and water depth (h) for the vertical section A shown in Figure 7, which
crosses the 2011 Tohoku-oki earthquake; (b) the difference between arrival time, Dt, calculated from incompressible and
compressible models. Time series of free surface (g) at Xp5 2,000 km calculated by the solution of (c) the incompressible
solvers and (d) the compressible flow solvers. The results from three-dimensional models and two-dimensional models
are shown in black and blue, respectively. The signal arrival time tar and first crest arrival time tp are shown by vertical
gray lines for incompressible (dashed) and compressible (dotted) solvers.
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h i2

0
B@

1
CA (21)

~f ð2hÞ5 1

cosh ~bnh2Dsinh ~bnh
(22)

where D5c=2~bn.

Equation (19) is the final form of the modified hyperbolic mild-slope equation for weakly compressible fluid.

4. Sample Computation

Sample computations have been carried out to verify whether the mild-slope equation model (19) can be
safely applied in place of a more computationally expensive 3-D treatment based on (3). In this paper, we
mainly concentrate on the surface gravity wave mode to improve the arrival time of tsunami waves.

Comparison is made with MSE for weakly compressible flow with those obtained from 3-D compressible, 3-
D incompressible and 2-D incompressible flow solvers. For incompressible flow, c !1, the governing
equation (3) reduces to Laplace’s equation for the potential U. We present results for two different domains
consisting of vertical sections in (x, z) through laterally uniform domains with no y-dependence, therefore

Figure 7. Bathymetry data (ETOPO1 and JODC data) with the position of JAMSTEC and DART bottom pressure gauges.
The epicenter of 2011 Tohoku-oki event is shown by the star. The black line delimits, together with the coastline, the
domain of the numerical computations. Section A is shown by dashed black line.
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the 3-D solution can be solved for 2-D domain. Similarly, the MSE can be solved along 1-D domain. The
computations are done first with constant water depth and the second with varying water depth. Figure 4
shows the optimized value for Df in order to reproduce 3-D wave field properly. The RMSE has been calcu-
lated for consecutive maxima in wave train between 3-D and 2-D models. Therefore, frequency bands of
width Df 5 0.001 Hz have been selected to discretize the forcing spectrum for the 0th mode covering
0 � f �

ffiffiffiffiffiffiffiffi
g=h

p
.

For the first case, the numerical solvers are applied on a computational domain 1,200 km long with constant
depth h 5 4 km; At x 5 0, monochromatic waves with three wavelengths, k=h � 500; 100, and 50, are
imposed, together with a radiation to allow reflected waves to leave the domain. The wave frequencies are
in the range of tsunamigenic gravitational waves, presented in Figure 2. The Sommerfeld radiation condi-
tion is applied at the open end of the domain, so that the waves leave the domain freely. To correctly

Figure 8. Time frames of seafloor deformation (color scale in meter) caused by the 2011 Tohoku earthquake (Grilli et al., 2013) and a dual SMF source to the north
(Tappin et al., 2014) at 30 s intervals. Depth range is shown by contour lines at 2,000 m intervals.

Table 1
Coordinates of JAMSTEC and DART Sensors

Station Latitude (8) Longitude (8) Depth (m)
Distance from
epicenter (km)

PG1 4184201400N 14482601500E 2,200 450
PG2 4281401100N 14485005400E 2,200 515
DART#21418 3884101700N 14884600900E 5,662 510
DART#21401 4283700000N 15283500000E 5,264 970
DART#21413 3083301400N 15280705000E 5,848 1,170
DART#21419 4482203800N 15584103300E 5,320 1,300
DART#52405 1285900700N 13281100100E 5,895 2,960
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reproduce the wave-field, the maximum mesh size is 1,000 m, for a total of 1,200 elements in the case of
the depth-integrated model (equation (19)) and more than 50,000 elements for the 3-D models (equation
(3)). The time step is dt 5 5 s and the computational time to reproduce 1,000 s of real-time simulation was
approximately 5 min for (equation (19)) and approximately 1 h for 3-D solvers. A computer equipped with
an i7 3.2 GHz CPU and 16 GB RAM has been used for the simulation.

A comparison of free-surface elevations at x 5 1,000 km between 3-D (equation (3)) and 2-D (equation (19))
models are presented for the case of compressible ocean in Figure 5. In each subplot, the 3-D and 2-D solu-
tions are shown by solid and dashed lines, respectively. The signal arrival time, tar5L=cco, is shown by verti-
cal dashed line, where L is the distance from the monochromatic wave generator and phase celerity, cco, is
calculated from the solution of dispersion relation equation (11) for a given frequency and depth. The phase
celerity are close to the ones calculated for the case of shallow water limit (kh� 1) presented in equation
(14). The 3-D model and depth-integrated model are in good agreement in prediction of the wave modula-
tion and arrival time.

In the second case, a varying sea water depth along a vertical cross section is considered. The domain’s
geometry and residual bed deformation, depicted in Figure 6a, are extracted from an arbitrary line intersect-
ing the Tohoku 2011 earthquake epicenter and deep ocean, shown in Figure 7 as section A. In Figure 6b,
the approximate time lag between incompressible and compressible model is shown. At a given water
depth, the phase speeds are calculated from equation (14) and subsequently travel times and time lags are
evaluated. Since the reduction rate has larger values at deeper waters, at large distances and at deeper
parts, the time lags accumulate, i.e., Dt548 s at a point 2,000 km from the source. The summation of the
results calculated for each narrow bands of the frequency spectrum in 2-D model leads to reconstruction of
3-D results. The comparison between incompressible and compressible flow solvers and the validation of
depth-integrated models are shown in Figures 6c and 6d in terms of time series of free-surface elevation g,

Figure 9. Time series of free-surface elevation (g) at JAMSTEC and DART observatories PG1; PG2; DART#21418;
DART#21401; DART#21413; DART#21419; and DART#52405: measured (red lines); calculated by the compressible solver
(black lines) and an incompressible solver (blue lines). t 5 0 refers to the time of occurrence of the earthquake.
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at a distance xp 5 2,000 km from the coast. The signal arrival time tar and first crest arrival time tp are shown
by vertical gray lines for incompressible (dashed) and compressible (dotted) solvers. The maximum mesh
size is again 1,000 m, for a total of 2,300 elements in the case of the depth-integrated model s, and 300,000
triangular elements for the 3-D ones. The time step and the discretization of the spectra are the same of the
constant depth case. The computational time to reproduce 4 h of real-time simulation was about 10 min for
the 2-D model and about 1.5 h for the 3-D model, using the same computer used for the previous simula-
tion. Similar to the case of constant depth, the incompressible models predicts earlier arrival of signal and
tsunami peak, shown by vertical dashed lines. On the other hand, the arrival time for the case of a com-
pressible ocean, shown by vertical dotted lines in Figure 6d, is 48 s later than the incompressible ones.
Results calculated using the 2-D and 3-D models are in good agreement, both in terms of peak amplitudes
and signal/peak arrival times.

5. 2011 Tohoku-oki Event

On 11 March 2011, at 14:46 local time (JST), a megathrust earthquake of moment magnitude MW 59:0
occurred off the Tohoku district, north-eastern Japan, causing a devastating tsunami that resulted in over
15,800 fatalities as well as over 3,300 people missing and caused enormous destruction along the coast of
Japan.

Bottom pressure data was collected during the event by the DART network and the Japan Agency for
Marine-Earth Science and Technology (JAMSTEC) deep sea observatories (Table 1). Locations of observato-
ries which recorded the waves generated by the 2011 earthquake are shown in Figure 6, together with
bathymetric information within the footprint of the numerical domain described below. The DART network
was deployed by the National Oceanic and Atmospheric Administration (NOAA), to support real-time fore-
casting of tsunami events (http://nctr.pmel.noaa.gov/Dart/). Tsunami warning was issued after recording

Figure 10. Difference between arrival time of surface gravity waves, calculated from the compressible and incompressible
flow solvers.
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Figure 11. Snapshots of surface (g) gravity wave elevation generated by the 2011 Tohoku-oki earthquake and SMF, computed with the hydroacoustic model. t 5 0
refers to the time of occurrence of the earthquake.
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strong signatures of the earthquake and then of the tsunami. The JAMSTEC cabled observatory of Hokkaido
consists of three ocean-bottom seismometers (OBSs) and two ocean-bottom pressure gauges (PGs), and
their data sets are sent to JAMSTEC in real time (http://www.jamstec.go.jp/). These observatories are
equipped with many instruments, including bottom pressure recorders and seismometers (OBS1 and OBS3).
The model domain and bathymetry are shown in Figure 7. The domain covers an area of about 1:513107

km2. Bathymetry data used in the numerical simulations were obtained from the National Geophysical Data
Center (NGDC) database ETOPO1 (Amante & Eakins, 2009) and Japan Oceanographic Data Center (http://
www.jodc.go.jp/).

Reconstructed seabed motion is a combination of the primary vertical displacement of the seafloor due to
the earthquake (Grilli et al., 2013), and an additional tsunami source consisting of a submarine mass failure
triggered after 201500 delay and lasted for 63 s (SMF, i.e., a submarine landslide; Tappin et al., 2014). The
earthquake caused mainly seabed uplift near the trench axis with a weaker subsidence nearshore with a
maximum value of f511:35 m in deeper part of trench. As in Tappin et al. (2014), the SMF is a rigid slump
with motion idealized as a small amplitude pendulum-like motion for the slump center of mass. The simpli-
fied SMF geometry has a quasi-Gaussian shape, similar to actual slumps. More details on the generation
mechanism can be found in Tappin et al. (2014). Unlike the traditional incompressible tsunami models,
which often use the residual vertical displacement of the bottom as the initial free-surface displacement, in
these depth-integrated wave models, the spatiotemporal sea bottom motion is considered. The continu-
ously varying seafloor geometry, shown by snapshots in Figure 8, is used as the boundary condition in the
numerical model.

Numerical simulations of long surface gravity waves generated by the 2011 Tohoku-oki event were per-
formed by solving for the real roots of dispersion relation, equation (11), which corresponds to the zeroth
mode of equation (19). Equation (19) is solved by means of a Finite Element Method on the numerical
domain of Figure 7, which has been discretized in triangular elements, here with a maximum size of 5 km.
There are 2,800,000 grids for the model. The computations were done for simulation of 5 h of real time. Fre-
quencies in the range f 5 0–0.03 Hz, with a Df 5 0.001 Hz, were solved to reconstruct the gravity wave field.
In a separate simulation, computation has been done using the incompressible flow solver in order to inves-
tigate the effect of ocean compressibility on tsunami wave arrival time.

Simulated free-surface elevations g are shown in Figure 9 at the locations of JAMSTEC observatories and at
the DART buoys (Table 1). The blue and black lines show results of the incompressible and compressible
numerical models, respectively, while the red lines represent the signals recorded at the instruments.

The comparison between the compressible model and the field data at the observatories shows a good
agreement in terms of amplitude, period and arrival time of the signal given by the long gravity wave tran-
sit. Comparison between tsunami arrival time to the gauges from both numerical models shows that closer
to the epicenter, there is no detectable difference (DtPG1 512 s; DtPG2 513 s, and DtD21418513 s). On the other
hand and for farther gauges, the compressible model predicts later arrival of tsunami waves, closer to in
situ measurement (DtD21401527 s; DtD21419540 s; DtD21413540 s, and DtD52405593 s). Note that phase speed
is also a function of other parameters (i.e., frequency dispersion and bottom elasticity), which are missing in
present model. Also, the summation of surface gravity wave time series calculated from the compressible
flow solver has better representation of signals compare to incompressible model since it divides the source
frequency spectrum into discrete narrow bands with different model coefficients. As a result, each compo-
nent of surface gravity wave propagate with its own phase speeds.

The time difference between the tsunami arrival time from the results of numerical simulations is shown in
Figure 10. As waves propagate farther into the deeper ocean, the waves propagate faster in incompressible
model. The compressible flow solver reports later arrival due to increase in reduction term (120:253M2).
Figure 11 depicts the time history of generation and propagation of tsunami waves in the computational
domain. The wave front starts spreading and covers the entire domain after 3 h.

6. Conclusions

Inclusion of ocean compressibility in the modeling of tsunami propagation over large-scale geometries
could reduce the early arrival of tsunami waves in the far distances from tsunamigenic source. In this regard,
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we have therefore considered a weakly compressible inviscid fluid in which waves are generated by a mov-
ing bottom and then propagate over a mildly sloped seabed. Via a proper application of the averaging tech-
nique, we have modified the existing hyperbolic Mild Slope Equation for Weakly Compressible fluids.
Solution of the equation allows the description of all the mechanics in the x, y plane, overcoming numerical
difficulties. The model is first validated against three-dimensional model over vertical transects of constant
and variable sea bottom. The time lag is investigated compared to incompressible flow solvers. Then, we
reconstruct the gravity wave field generated by the 2011 Tohoku-oki event. Model results are compared
with field data recorded during the 2011 Tohoku-oki event, by the Deep-ocean Assessment and Reporting
of Tsunamis (DART) network and by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
observatories.

The mild slope model is formulated in plane Cartesian coordinates and is thus limited to medium propaga-
tion distances. Shallow water or Boussinesq models used for ocean basin scale propagation are typically for-
mulated in spherical polar coordinates and are suitable for modeling propagation over long distances,
allowing the effect of compressibility to accumulate. This work is a qualitative study on the role of ocean
compressibility for generation and propagation of surface gravity waves. Although this model lacks the
effect of frequency dispersion and Coriolis forces, embedded in numerical models such as Boussinesq mod-
els, as described in Kirby et al. (2013), and bottom elasticity effects (Eyov et al., 2013), it sheds lights to the
role of compressibility on phase speed and draw the path toward inclusion of these effects in model
equations.
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